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ABSTRACT  
 

In the design of different mechanical parts or engineering structures, the stress and strain state of 

a point or particular points is often required. Finding as many of them as possible will enable us 

to dimension or select the most optimal possible load or material. Determination of the stress and 

strain state can be achieved by analyzing this state analytically or graphically with the three circles 

of Mohr. In this article we will review the grapho-analytical analysis of these Mohr's circles, now 

considering the space between them as Mohr's space. Thus, in this article are shown the properties 

of these points of Mohr's field, giving them an analytical and geometrical meaning.  

Keywords: Principal stresses or strains, stress or strain tensor, principal orientations, 

leading cosines, principal Mohr’s circles, Mohr space.  

 

 

1 INTRODUCTION  

Different Mohr's Circle is commonly used to represent and 

analyze stress states in materials, especially in the field of 

structural and mechanical engineering [1-4]. The Mohr's 

Circle is a graphical method used in engineering to analyse 

stress and strain conditions at a point in a material subjected 

to complex loading [1, 5-10]. The circle is constructed on a 

set of axes representing normal and shear stresses. The centre 

of the circle corresponds to the average normal stress, while 

the radius represents the maximum shear stress [11-17]. 

Points on the circle represent various stress states associated 

with different orientations of the planes. Furthermore, it's a 

valuable tool for gaining insights into stress transformations 

and is widely employed in fields such as structural design, 

material testing, and geotechnical engineering [18-28].  

Our research work will start by analysing a volumetric 

element, as shown a tetrahedron in Figure 1. The principal 

stresses are 𝜎1, 𝜎2, 𝜎3 respectively in principal faces.  
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Figure 1  Tetrahedron with principal faces and stresses.  

The stress vector on a random face with the leading vector 

�⃗� (𝑙, 𝑚, 𝑛) we will have this matrix form [1] as shown in 

equation 1:  

�⃗� = (

𝑝𝑥
𝑝𝑦
𝑝𝑧
) = (

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

)(
𝑙
𝑚
𝑛
) = (

𝜎1𝑙
𝜎2𝑚
𝜎3𝑛

)  (1) 

Whereas, the normal and tangential components of which the 

normal and tangential stresses are devided respectively 

would be found by equations 2 and 3.For the normal stress 

we will have:  

  

𝜎 = 𝑒 ∙ �⃗� = (𝑙 𝑚 𝑛)(

𝑝𝑥
𝑝𝑦
𝑝𝑧
) = (𝑙 𝑚 𝑛)(

𝜎1𝑙
𝜎2𝑚
𝜎3𝑛

)  (2) 

While for the shear stress we will have this matrix form, also 

treated in detail in [1]. 
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Figure 2  Spaces outside the Mohr’s circle for the three leading cosines 𝑙, 𝑚 and 𝑛.  

 

𝜏 = �⃗� − �⃗� = (
1 − 𝑙2 −𝑙𝑚 −𝑙𝑛
−𝑚𝑙 1 − 𝑚2 −𝑚𝑛
−𝑛𝑙 −𝑛𝑚 1 − 𝑛2

)(

𝑝𝑥
𝑝𝑦
𝑝𝑧
)  (3) 

From these three matrix forms, after some simplifications, 

we can explain these in a system of equations as shown 

below: the equation of driving vector; the normal stress 

equation as well as total stress equation.  

1 = 𝑙2 +𝑚2 + 𝑛2, the driving vector equation 

𝜎 = 𝜎1𝑙
2 + 𝜎2𝑚

2 + 𝜎3𝑛
2, the normal stress equation 

𝑝2 = 𝜎21𝑙
2 + 𝜎22𝑚

2 + 𝜎23𝑛
2 total stress equation on a 

random face. 

2 SOLUTIONS OF LEADING COSINES  

From the three equations above, let's consider that we have 

unknown orientations of the random face. So, the task to 

enter the space of Mohr's field is to determine these 

orientations first. If we express the above equations in 3x3 

matrix form, we would have the expression according to 

equation 4:  

(
1
𝜎
𝑝2
) = (

1 1 1
𝜎1 𝜎2 𝜎3
𝜎1
2 𝜎2

2 𝜎3
2
)(

𝑙2

𝑚2

𝑛2
)  (4) 

This form can be simplified after transformations according 

to equation 5.  

(

1
𝜎 − 𝜎1

(𝜎 − 𝜎1)(𝜎 − 𝜎2) + 𝜏
2
) =

(

1 1 1
0 𝜎2 − 𝜎1 𝜎3 − 𝜎1
0 0 (𝜎3 − 𝜎1)(𝜎3 − 𝜎2)

)(
𝑙2

𝑚2

𝑛2
)  

(5) 

It is clear that after this transformation, we can determine 

step by step the three leading cosines as shown in the solution 

in vector form in equation 6.  

(
𝑙2

𝑚2

𝑛2
) =

(

  
 

(𝜎−𝜎2)(𝜎−𝜎3)+𝜏
2

(𝜎1−𝜎2)(𝜎1−𝜎3)

(𝜎−𝜎3)(𝜎−𝜎1)+𝜏
2

(𝜎2−𝜎3)(𝜎2−𝜎1)

(𝜎−𝜎1)(𝜎−𝜎2)+𝜏
2

(𝜎3−𝜎1)(𝜎3−𝜎2) )

  
 

  (6) 

3 RESULTS IN THE MOHR’S FIELD  

The results of leading cosines 𝑙, 𝑚 and 𝑛 are mathematically 

known to be within the segment  −1 ÷ 1. Because in 

equation 6 we have the solution of the square of these 

cosines, then the segment where this solution should be 

wanted is  0 ÷ 1. Also, using the cyclic rule, we are 

analyzing only one of these leading cosines, accepting that 

the solution methodology is the same for all three leading 

cosines, and in the end we are only giving their analytical 

and graphical results.  

First let's analyze for the leading cosine 𝑙 and considered 

unchanged. In equation 7a, b and c, are given the space where 

the solutions of leading cosines 𝑙, 𝑚 and 𝑛 are found.  

0 ≤ (𝑙2 =
(𝜎−𝜎3)(𝜎−𝜎2)+𝜏

2

(𝜎1−𝜎2)(𝜎1−𝜎3)
) ≤ 1  (7a) 

0 ≤ (𝑚2 =
(𝜎−𝜎3)(𝜎−𝜎1)+𝜏

2

(𝜎2−𝜎1)(𝜎2−𝜎3)
) ≤ 1  (7b) 

0 ≤ (𝑛2 =
(𝜎−𝜎1)(𝜎−𝜎2)+𝜏

2

(𝜎3−𝜎1)(𝜎3−𝜎2)
) ≤ 1  (7c) 

Because from the Strength of Materials we have the 

agreement 𝜎1 > 𝜎2 > 𝜎3 then according to equation 8 we 

extract the space that is outside the Mohr’s circle which 

achived when the equation 7a is equal to zero.  

(𝜎 −
𝜎2+𝜎3

2
)
2

+ 𝜏2 ≥ (
𝜎2−𝜎3

2
)
2

  (8) 

We can do the same analysis for two remaining leading 

cosines and the result will be a space above or below Mohr's 

circles. This is because we have to be careful since the 

solutions are given by equation 6, as well as from the 

Strength of Materials, we have the agreement for the ranking 

of the main stresses like 𝜎1 > 𝜎2 > 𝜎3.  
As for the leading cosine 𝑚, the product (𝜎2 − 𝜎3)(𝜎2 −
𝜎1) < 0, and consequently the space that we take will be 

restriction from above, that is inside a circle. For the leading 

cosine 𝑛, although both differences are less than zero, the 

graphed space will be outside the circle. The solution for the 

other two cases will be given by equations 9 and 10, 

respectively, for cosines 𝑚 and 𝑛.  

(𝜎 −
𝜎1+𝜎3

2
)
2

+ 𝜏2 ≤ (
𝜎1−𝜎3

2
)
2

  (9) 

(𝜎 −
𝜎1+𝜎2

2
)
2

+ 𝜏2 ≥ (
𝜎1−𝜎2

2
)
2

   (10) 
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From figure 2, we clearly see that a stressed state in 3D will 

be a point which will be located in these Mohr’s spaces. We 

will have special cases when we have a strained plate 

condition and the points will be located in Mohr's circles.  

Regarding the cases treated above in equations 7a, b and c, 

we considered that this leading cosine is greater than zero. 

But what happens in other cases, because we look for it in 

the segment. 0 ÷ 1?  

4 GRAPH OF MOHR’S CIRCLES IN HIS SPACE  

To graphically show Mohr's circles in the area defined in 

figure 2 we will have to analyse the case where these leading 

cosines are constant. In the equation 6 let consider that the 

leading cosine 𝑙 is constant and determined by 𝑙 = cos 𝛼. 

After some transformation, we can get (𝜎 − 𝜎3)(𝜎 − 𝜎2) +
𝜏2 = (𝜎1 − 𝜎2)(𝜎1 − 𝜎3)𝑙

2. Then with the same 

transformations we determine equation 11, where we have:  

(𝜎 − 𝑎𝑙)
2 + 𝜏2 = (

𝜎2−𝜎3

2
)
2

+ (𝜎1 − 𝜎2)(𝜎1 − 𝜎3)𝑙
2  (11) 

Where 𝑎𝑙 =
𝜎2+𝜎3

2
, is the center of concentric circles with 

radius according to the equation 12.  

𝑅𝑙(𝑙) = √(
𝜎2−𝜎3

2
)
2

+ (𝜎1 − 𝜎2)(𝜎1 − 𝜎3)𝑙
2  (12) 

It seems clear that this equation depends on the leading 

cosine and this geometrically expresses concentric circles 

passing from the center of 𝑎𝑙. Special cases when 𝑙 = 0 and 

𝑙 = 1, which present the point in the circle and the rays 

respectively will be: 𝑅𝑙=0 =
𝜎2−𝜎3

2
  and 𝑅𝑙=1 = 𝜎1 −

𝜎2+𝜎3

2
. 

With the same reasoning for the other two leading cosines, 

the solution of the rays of the concentric circles respectively 

in their centers 𝑎𝑚 =
𝜎1+𝜎3

2
 and 𝑎𝑛 =

𝜎1+𝜎2

2
 will be according 

to equations 13 and 14.   

𝑅𝑚(𝑚) = √(
𝜎1−𝜎3

2
)
2

+ (𝜎2 − 𝜎1)(𝜎2 − 𝜎3)𝑚
2  (13) 

𝑅𝑛(𝑛) = √(
𝜎1−𝜎2

2
)
2

+ (𝜎3 − 𝜎1)(𝜎3 − 𝜎2)𝑛
2   (14) 

Special cases will be for cosines 𝑚 and 𝑛 respectively 

𝑅𝑚=0 =
𝜎1−𝜎3

2
  and 𝑅𝑚=1 = 𝜎2 −

𝜎1+𝜎3

2
, as well  𝑅𝑛=0 =

𝜎1−𝜎2

2
 and 𝑅𝑛=1 =

𝜎1+𝜎2

2
− 𝜎3.  

Equations 12, 13 and 14 express the equations of the rays of 

concentric circles according their centers. Let's express it 

graphically in a case where we know the stress tensor as 

follows:  

𝑇𝜎 = (

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

) =

(
4.25 0.65 1.125
0.65 −1.562 2.49
1.125 2.49 1.312

)  

(15) 

The principal stresses for this stress tensor will be 𝜎1 =
5, 𝜎2 = 2, 𝜎3 = −3. Then, we can make the dependence of 

Mohr's circles in function of the respective leading angles. 

Figure 3 shows the relationships of these rays for the given 

tensor as a function of the leading cosines in the same graph.  

 

Figure 3  The dependence of the rays of circles with the 

corresponding leading cosines.  

From the graph of figure 3, for a different stress state, we can 

conclude that the rays of the main circles in Mohr's space are 

equal if the leading cosines are 𝑙 = 𝑚 = 𝑛 = 0.5. We must 

be careful since this point has 3 faces in Mohr's space, 

although the rays are equal for all 3 leading cosines, the 

centers of these circles are different. This expression can also 

be derived from equations 12, 13 and 14. If we replace these 

leading cosines, we will have equation 24.  

𝑅𝑙(𝑙)
2 = (

𝜎2−𝜎3

2
)
2

+ (𝜎1 − 𝜎2)(𝜎1 − 𝜎3)𝑙
2  (16) 

For 𝑙 = 0.5 

𝑅𝑙(0.5)
2 = (

𝜎2−𝜎3

2
)
2

+ (𝜎1 − 𝜎2)(𝜎1 − 𝜎3)
1

4
   (17) 

𝑅𝑙(0.5)
2 =

1

4
(𝜎1

2 + 𝜎2
2 + 𝜎3

2 − 𝜎1𝜎2 − 𝜎2𝜎3 −

𝜎1𝜎3)   
(18) 

(𝜎1 + 𝜎2 + 𝜎3)
2 = 𝜎1

2 + 𝜎2
2 + 𝜎3

2 + 2(𝜎1𝜎2 +
𝜎2𝜎3 + 𝜎1𝜎3)   

(19) 

𝜎1
2 + 𝜎2

2 + 𝜎3
2 = (𝜎1 + 𝜎2 + 𝜎3)

2 − 2(𝜎1𝜎2 +
𝜎2𝜎3 + 𝜎1𝜎3)      

(20) 

𝑅𝑙(0.5)
2 =

1

4
[(𝜎1 + 𝜎2 + 𝜎3)

2 − 3(𝜎1𝜎2 + 𝜎2𝜎3 +

𝜎1𝜎3)]   
(21) 

𝐼1 = 𝜎1 + 𝜎2 + 𝜎3  
(22) 

𝐼2 = 𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎1𝜎3   
(23) 

𝑅𝑙(0.5)
2 =

1

4
(𝐼1
2 − 3𝐼2) = 𝐼4  (24) 

Will have the same expressions for 𝑚 = 0.5 or 

 𝑛 = 0.5.  

So, the term 𝜎1
2 + 𝜎2

2 + 𝜎3
2 − 𝜎2𝜎3 − 𝜎2𝜎3 − 𝜎2𝜎3 is the 

same for all three leading cosines.
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Figure 4  Mohr’s 𝑙, 𝑚 and 𝑛 concentric circles in his space.  

 

If we express equation 11 and the analogous equations for the 

cosine 𝑚 and 𝑛 as their function, than we would obtain 

graphically the concentric circles for this example, figure 4. Since 

they are the two extreme cases for the leading cosine equal to zero 

and equal to one, we have the two restrictions of these circles. 

Circles whose rays increase, circles 𝑙 and 𝑛 are bounded from 

below by the zero circle (the special case of Mohr, as in plane 

stress state) and from above when it interrupts the other main 

stress. While in the case of decreasing circles, it is either 

restrictions from above by the largest Mohr circle and from below 

when this circle becomes tangent to the other two at the same 

point 𝜎2. All the concentric circles of Mohr shown in figure 4 

must be restricted by the other two circles of leading. This will be 

given with the conditions of the minimum and maximum angles 

of the making of these circles. For this, let's look at a circle with 

constant 𝑙.  

 

Figure 5  Minimum and maximum angles of particular 

points in Mohr's space for 𝑙.  

Analysing the two triangles, ACD and ABE at figure 5, we 

have the expressions for the minimum and maximum angles 

as in equations 25 and 26.  

𝜑𝑚𝑖𝑛(𝑙) = cos
−1(

𝑅𝑙(𝑙)
2+(𝑅2+𝑅3)

2−𝑅2
2

2∙𝑅𝑙(𝑙)∙(𝑅2+𝑅3)
)  (25) 

𝜑𝑚𝑎𝑥(𝑙) = cos
−1(

𝑅𝑙(𝑙)
2+(𝑅1−𝑅3)

2−𝑅1
2

2∙𝑅𝑙(𝑙)∙(𝑅1−𝑅3)
)  (26) 

Graphically, these two angles would be given as in figure 6. We can 

follow the same rationalization for the two other circles. Regarding 

the geometry for determining the minimum angles for the case of 

the cosine 𝑚, we analyze the triangles BCF and BAG in figure 7.  

 

Figure 6  Graphs of the minimum and maximum angle of 

the leading cosine 𝑙.  

 

Figure 7  Minimum and maximum angles of particular 

points in Mohr's space for 𝑚.  

The minimum and maximum angles in function of the 

leading cosine 𝑚 will be respectively according to equations 

27 and 28.  

𝜑𝑚𝑖𝑛(𝑚) = cos
−1(

𝑅𝑚(𝑚)
2+(𝑅1−𝑅2)

2−𝑅2
2

2∙𝑅𝑚(𝑚)∙(𝑅1−𝑅2)
)  (27) 

𝜑𝑚𝑎𝑥(𝑚) = 𝜋 − cos
−1(

𝑅𝑚(𝑚)
2+(𝑅1−𝑅3)

2−𝑅3
2

2∙𝑅𝑚(𝑚)∙(𝑅1−𝑅3)
)  (28) 

Graphically, these angles would be given according to figure 

8. Also for the third case we analyze figure 9, and 

respectively the triangles CBM and CAN.  
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Figure 8  Graphs of the minimum and maximum angle of 

the leading cosine 𝑚. 

 

 

Figure 9  Minimum and maximum angles of particular 

points in Mohr's space for 𝑛. 

 

 

Figure 10  Graphs of the minimum and maximum angle of 

the leading cosine 𝑛.  

The minimum and maximum angels as a function of the 

leading cosine 𝑛 will be respectively according to equations 

29 and 30.  
 

𝜑𝑚𝑖𝑛(𝑛) = 𝜋 − cos
−1(

𝑅𝑛(𝑛)
2+(𝑅1−𝑅2)

2−𝑅1
2

2∙𝑅𝑛(𝑛)∙(𝑅1−𝑅2)
)  (29) 

𝜑𝑚𝑎𝑥(𝑛) = 𝜋 − cos
−1(

𝑅𝑛(𝑛)
2+(𝑅2+𝑅3)

2−𝑅3
2

2∙𝑅𝑛(𝑛)∙(𝑅2+𝑅3)
)  (30) 

Graphically, according to the leading cosine 𝑛, these 

angles will give in to figure 10.  

Taking equations of maximum and minimum angels, 

which in Mohr’s space express the minimum and maxium 

borders which a different face it can rotates around the 

direction of the main stresses, then we can make Mohr’s 

grid. Let’s make these rotations in the example taken as in 

figure 1. As seen in this figure, is formed Mohr's grid 

which for a different face it shows the path of rotation 

until it gets to the Mohr’s face. 

 

Figure 11  Graphs of the grid in Mohr’s space. 

Let’s also analyses the cases where 𝑙 = 𝑚 = 𝑛 = 0.5, as a 

single point in circles’s graph (figure 3), but this give 

three points in Mohr’s space which represented by points 

A, B and C. Analysing the triangles for minimum and 

maximum angles, the angles will be in function of three 

leading cosines. So the maximum and minimum rotations 

for each leading cosine will be given by the equations as 

follows:  

 

𝜑𝑙(𝑙,𝑚, 𝑛) = cos
−1(

𝑅𝑙(𝑙)
2+(𝑅2+𝑅3)

2−𝑅𝑛(𝑛)
2

2∙𝑅𝑙(𝑙)∙(𝑅2+𝑅3)
)  (31) 

𝜑𝑚(𝑙,𝑚, 𝑛) = cos
−1 (

𝑅𝑚(𝑚)
2+(𝑅1−𝑅2)

2−𝑅𝑛(𝑛)
2

2∙𝑅𝑚(𝑚)∙(𝑅1−𝑅2)
)  (32) 

𝜑𝑛(𝑙,𝑚, 𝑛) = 𝜋 − cos
−1(

𝑅𝑛(𝑛)
2+(𝑅1−𝑅2)

2−𝑅𝑚(𝑚)
2

2∙𝑅𝑛(𝑛)∙(𝑅1−𝑅2)
)   (33) 

 
Figure 12  Mohr’s space analysis.  

 



ISSN 1590-8844 

International Journal of Mechanics and Control, Vol. 25, No. 01, 2024 

 

34 

5 CONCLUSIONS 

In our study work, the Mohr cycle has significantly 

contributed to the advancement of engineering practices 

related to fatigue analysis, material characterization, and 

structural design, leading to the development of safer and 

more durable mechanical systems. Here are some specific 

achievements associated with the Mohr cycle study:  

• Plotting stress and strain values for each cycle, 

engineers can identify fatigue failure points and 

determine the number of cycles a material can 

withstand before failure. 

• Understanding the stress and strain distribution through 

the Mohr cycle helps in identifying potential failure 

modes and taking preventive measures. This could 

involve implementing design modifications, 

introducing stress-relieving features, or applying 

surface treatments to improve material durability. 

• When the leading cosine are 𝑙 = 𝑚 = 𝑛 = 0.5, their 

respective rays are equal.  

• The expression for these rays is 
1

4
(𝜎1

2 + 𝜎2
2 + 𝜎3

2 −

𝜎2𝜎3 − 𝜎2𝜎3 − 𝜎2𝜎3).  
• A simplified form of this above expression is given 

according equation 24. This equation is fourth invariant 

wich give the rays in as stress state where the leading 

cosines are two by two equal to 0.5.  

• Mohr's main circles represent orientations with zero 

leading cosines.  

• Mohr’s grid circles are concentic circles centered on the 

main Mohr’s circles.  

• They are restricted by the main Mohr’s circles and the 

extremal angles are given by expressions 31, 32 and 33.  
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