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ABSTRACT

In this paper, position control and reduction of vibration of a 3D flexible L-shape mechanism
has been achieved through the synthesis of a constrained Model Predictive Control (MPC).
A finite element model, based on the equivalent rigid link system (ERLS) theory, is used in
order to describe accurately the dynamic behaviour of the system. The model has been
validated through the experimental tests. In order to apply the constrained MPC control on the
mechanism, a linearized model which takes gravity force into account is derived as well as a
Kalman state estimator. The effectiveness and robustness of the control system has been
evaluated and discussed through several tests. Furthermore, the performance of the MPC
control has been compared with the performance of classical industrial control (PID).
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1 INTRODUCTION

Modelling, analysing and controlling of flexible
mechanisms have been under investigations for about four
decades. Moreover, the consequence of accurate modelling
and controlling the phenomena of mechanical vibration in
flexible mechanisms is designing and fabricating lighter
robot manipulators, which is a very important factor of
lower operation cost and as well as high operation speed.
Several studies have been done in order to define and
present a precise mathematical model for flexible multi-
body systems. These studies have started with investigation
on a single flexible-link mechanisms, after with
consideration flexible multi-body mechanisms in a planer
and finally flexible mechanisms in the spatial environment
[1-5]. The most used and adopted methods for modelling
the flexible mechanism includes the usage of discretization
methods such as finite element method (FEM) with the
purpose of presenting dynamics models using a finite
number of elastic degree-of-freedom. Models of such a
kind, providing a nodal representation of the mechanism,
have been proposed. Some author have also proposed
description of flexible mechanisms making use of modal
coordinates in place of physical coordinates. [6-9]
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The available literature on model-based control strategies
for flexible-link mechanisms is often the result of
application of modal dynamic models, and less frequently
on finite element-based models. Comprehensive reviews of
the large number of available works can be found in [5] and
[10].

Either linear or nonlinear control schemes have been
developed. Linear control schemes have been utilized
mostly. Some notable examples are robust control by
Caracciolo [11] and sliding mode control by Kurode [13].
Also several works have proposed the use of Model
Predictive Control (MPC) as an effective and suitable
solution to the problem of damping vibration in flexible
link mechanisms and structure. An experimental validation
of MPC as position and vibration control is available in
[20]. The mechanism under consideration is a single-link,
and control is achieved on a relatively slow sampling
frequency. A good overview of the topic, with several
applicative example, is available in [21]. Other kind of
mechanisms have been investigated by Boscariol for five
bar link mechanism in [12] and four bar link mechanism in
[23].

Currently, to the best of authors’ knowledge, there are no
available works on the predictive control of spatial flexible-
link mechanisms. It should be mentioned that the majority
of works in this area are application to planar mechanisms,
often moving in the horizontal plane, thus without taking
into account gravity. The aim of this paper is also to
provide a feasible solution that can deal with the
nonlinearities imposed by the presence of gravity force.



In this paper model predictive control (MPC) with
constrains is proposed to control the position and minimize
the amplitude the mechanical vibration during the motion
of a 3D flexible L-shape mechanism. There are some
motivating reasons for choosing this controller: first, the
prediction ability based on an internal model can be a very
effective advantages in fast-dynamic systems. Then MPC is
well applicable to MIMO plants, because the outputs are
calculated by solving a minimization problem which can
take in consideration of several variables. Another
remarkable advantages of this control scheme is its
competences to perform constrains on both control and
controlled variables [14].

The linearized model which is used in the MPC controller
scheme is based on equivalent rigid-link system (ERLS)
theory which is developed and proposed by Vidoni in [15] .
The spatial flexible L-shape mechanism is taken into
consideration in this work as a test bench mechanism, while
having a single degree of freedom and allows 3D motion
and elastic displacement.

The paper is organized as follows: Section 2 briefly
explains the mathematical model of flexible mechanism,
which is valid for any spatial flexible multi-body system.
The description of the reference mechanism is given in
Section 3. Section 4 provides a description on the
linearization procedure as well as the accuracy validation
and designing procedure of Kalman state estimator. A brief
description of synthesis of model predictive control is
presented in the Section 5. In Section 6 simulation results
obtained controlling the nonlinear system with the MPC
controller have been discussed. An evaluation of robustness
properties of the controller is provided by several tests in
Section 7. In Section 8 the results of a comparison between
the performance of proposed MPC controller and a classical
PID controller are presented.

2 DYNAMICS MODEL OF A 3D FLEXIBLE
MECHANISM

One of the most studied topics in flexible multi-body
systems is dynamic modelling which is still an open issue
to investigate. In comparison with rigid mechanisms, the
elastic behaviour of flexible mechanism makes the
mathematical formulation of the models, which influence
and regulate the real physical behaviour of the system, quite
complex.

The approach used here for modelling of the systems with
large displacements and small elastic deformation is based
on Equivalent Rigid Link System (ERLS) concepts which
first was introduced for a planer mechanisms by
Giovagnioni in [3], and then expanded to 3D environment
by Vidoni in [15,22] which is briefly explained in this
section .

One of the main advantages of the ERLS approach in is that
the standard mechanisms definitions and concepts of 3D
kinematics could be adopted to formulate and solve the
ERLS dynamic model.
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2.1 Kinematics

As shown in Figure 1, each flexible link of the mechanism
can be divided into finite elements. Being {X, Y, Z} a
constant

REAL MECHANISM

link I1+2
link I+1 7

link !

ERLS

Figure 1 Kinematic definition of the ERLS

global reference frame, let us consider u; and r; as the
vector of the nodal elastic displacements of the i-th finite
element and the vector of nodal position and orientation for
the i-th element of the ERLS, respectively. Moreover
position vector of the generic point of the i-th element of
the ERLS and its elastic displacement are w; and v;
respectively. Hence, the absolute nodal position and
orientation of the i-th finite element b; with respect to the
global reference frame is:

bi=Ti+ u;

)

The absolute position p; of generic point inside the i-th
finite element is:

pi = w; +v;

@

For each finite element {x;, y; z;} is the local reference
frame that follows the ERLS motion. Given this, it can be
defined a block-diagonal global-to-local transformation
matrix T;(q)and a local-to-global transformation
matrix R;(q) can be defined. Therefore it is possible to
reform Equation 2 as follows:

pi = w; + Ri(@Ni(x;, ¥, z)Ti (@ 3

Where Ni(x,y,z;) is the shape function matrix for the
interpolation of the i-th finite element defined in local
frame, and ¢ is the vector of the generalized coordinates.

It can demonstrated that the expression for the virtual
displacement &p; in the constant reference frame is:

8pi = Ri(@N; (x, 1, 2)Ti (@) 61i 6R; (@ N; (X, Vo, 2 Ty (@ +
R (@)N; (xx, Vi, 2)8T; (@u; + Ry (@N; (xx, Yx, ) Ti (@) 0u;  (4)
Twice differentiating Equation 3 leads to the expression of

the acceleration of a generic point inside the i-th finite
element as:



z;éi(q)Ni(xiryi: z) Ty (@) + Ri(@N; (x;, i, z)Ti (il +

2 (Ri(Q)Ni(xi:yi» z)Ti(q) + Ri(@N; (x;, vy, Zi)Ti(Q)) u; +
(Ri(@N; (xi, yi, 2)Ti(@) + 2R, (@N; (xi, v, 2)Ti (@) +
Ri(@)N; (x;, i, z)Ti (@) w; (5)
If the kinematic entities of all the finite elements are

gathered into one vector, differentiating Equation 1 with
respect to time leads to:

db = du + dr (6)

The configuration of the ERLS (as well as its velocity and
acceleration) basically depends upon on the vector ¢ of the
free coordinates. This can be reformulated as:

dr = S(q)dq @)

S(g) is the matrix of the sensitivity coefficients for all the
nodes. Finally, by substituting Equation 7 into Equation 6
the following equation in matrix form can be obtained:

I Sy [du;
db — m] [ ln] 8
0 Syll dq ®)
2.2 Dynamics

The dynamic equations of the system can be obtained by
applying the principle of virtual works:

SWinertia 4 syyelastic 4 syyexternal — 9)
which can also be written as:

¥ 6ul My(# + i) 4+ 2 X 6uf (Mgy; + Mgapy ty; +

Y 6ul (M + 2Mcy; + Mespu; + X 8uf Kjuy =

Yidufy +6u'f (10)
in which the mass matrix of the i-th element is:

Joi TE N{ R RN T; pidv = M (11)
The stiffness matrix of the i-th element is:

fm. TI BT D;B;T;dv = K; (12)

The vector of the equivalent nodal loads due to gravity is:

L, TEN{R] g pidv = fy; (13)
The Coriolis terms are related to:

[, TENTRT RN T; p;dv = Mgy (14)
[, TENIRI RN T; p;dv = Mgy, (15)
The centrifugal stiffness terms are:

J; T NI RT Ry NiTipydv = My (16)
|, TENTRT2R;N;T; predv = 2My; (17)
J TENT NiTypidv = M, (18)
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Being 6@; the block-diagonal matrix which contains the
virtual angular displacement and B; the strain displacement
matrix, the following equations holds:

STT = 50,T7 (19)

Since the virtual nodal elastic displacements du and virtual
displacement of the ERLS 67 are independent from each
other and taking into account the damping trough Rayleigh
model using a and f damping constants, Equation 10 can be
subdivided in two equations:

M@ + i) + 2(Mgy + Mgy)u + aMu + BKu +

(MCI + ZMCZ + Mc3)u + Ku = fg + f (20)
STM(# + i) + 2ST(Mgq + Mgy)u + aSTMu +
ST(M¢y + 2Mey + Mcz)u = ST (fy + f) (21

Dynamic equations, after the substitution of the second
order differential equations of the ERLS, can be grouped
and rearranged in matrix from after discarding the
equations for elastic degrees of freedom that have been
zeroed:

[SITV[M syz\is] [u] -

g

[—2(1‘/101 + Mg,) — aM — BK
ST(=2(Mg1 + Mgy) — aM)

Mo I
[STM ST] [f]
Then, taking x = [t g u q] as the augmented state vector,

and rearranging the matrices, the system expressing the
dynamics of the mechanism can be written also as:

u
q|+
u

—MS
—STMS$

—(Mc¢y +2Mc; + Mc3) — K
—=ST(M¢y + 2Mcy + Mc3)

(22)

M MS 0 O]t

s™ s™s o of|q| _

0 o 1 offu]”

L 0 o o Illg

—2Mg — aM — BK ~MS§  —(Mgy +2Mgy +Mg3)— K 0]

ST(—2(My + M) —aM) —S"MS  —S" (Mg +2Mgy + Mes) 0] ]4 +
I 0 0 offu
0 1 0 olla

M

s™m sT|9

0 0‘[/‘] (23)

0 o

The values of acceleration can be computed at each step by
solving the Equation 22, while the values of velocities and
of displacements can be obtained by an appropriate
integration scheme (e.g. the Runge-Kutta algorithm) and,
hence, the dynamic behaviour of the system can be
simulated.

3 REFERENCE MECHANISM

The model presented in the previous section is valid for any
spatial mechanism with any number of free coordinates.
Hence, an L-shape mechanism is chosen as the basis of the
simulation. The mechanism is made by two steel rods,
connected by a rigid aluminium joint. The kinematics and
dynamics characteristics of the reference mechanism are
reported in Table I.



Figure 2 the mechanism built in the laboratory for the
experimental validation of the model

Figure 3 Elastic displacement in the L-shape mechanism

Each beam finite element in the spatial environment has 12
degrees of freedom. According to Figure 3, the mechanism
has been discretized using 4 beam elements. After
assembling them and considering the constraints imposed
by the kinematic couplings and neglecting one of the nodal
displacements in order to make the system solvable [15],
the resulting flexible system is described by 24 nodal elastic
displacements and one rigid degree of freedom.
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Table I - Kinematics and dynamics characteristic
of the reference mechanism

Symbol Value
Young’s modulus E 2 x 10" [Pa]
Flexure inertia J 11.102 x 107 [m4]
moment
Poisson’s coefficient v 0.33
Beam width a 30 x 10~ [m]
Beam thickness b 10 x 10~ [m]
Density [0) 2.7 x 10° [Kg/m’]
First link length L, 0.5 [m]
Second link length L, 0.5 [m]
Rayleigh damping o 7x10* [s]
constant B 2.13 x 107 [s]
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4 LINEAR STATE-SPACE DYNAMIC MODEL

In order to develop a state-space linear model, to be used as
the prediction model for a linear MPC controller, a
linearization procedure has been applied to the differential
Equation 22 which is nonlinear due Coriolis term and to the
effects of gravity. Gasparetto has presented linearization
procedure that can be applied to planar mechanisms in [16].
A similar procedure is applied here, by extending it also to
spatial mechanisms.

From the basics of linear system theory, a linear time-
invariant (LTI) model in state space form can be written as:

{J'C(t) = Flinx(t) + Gynv(t)

y(t) = HyjnX + Dy v(t) (24)

where x(t), y(t) and v(t) represents the state vector,
output vector and input vector respectively and Fj;,,Gyin,
Hy, and Dy, are time-invariant matrices. Considering
x = [, q,u,q]" as the state vector, linearized state-space
form of the dynamic model of Equation 23 can be reported
as:

AjnX = BynX + Cpin T (25)

Taking into account the equilibrium point x, in the
mechanism configuration and choosing u = u, under the
system input v = v, in the proximity of the equilibrium
point, the following equation can be considered:

{x(t) =x, + Ax(t)

v(t) = v, + Av(t) (26)

By substituting the above relations into Equation 23, the
following relation can be found:

Ain(x)A% = B (x, + Ax)(xe + Ax) + Cpjp (x +

Ax) (v, + Ax) 27)

After some mathematical operations, the constant A;;, and
B, matrices in Equation 24 can be evaluated as:
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M MS 0 O w012
A = S™ S™™S 0 0 (28) Nlommear :
lin 0 0 I 0 0.1}t Linar 1
0 0 0 Iy, : . : : :
_ZMG _ aM _ ﬁK 0 _K B14 g GO freeevereeeee e e e
By, = ST(=2Mgz—aM —BK) 0 0 By, (29) o 9004}
I 0 O 0 : ;
in which: 80
0K K OF, 8993 i I i i 1
Biy=——7.— g 30 0 005 01 015 07 025 03
14 dq Fg dq ( ) time [s]
By, = aas Fy + ST % (31) Figure 4 Comparison between linear and nonlinear

impulsive response: angular position q
where F, represents the gravity force.

Cjin 1s unaltered by the linearization procedure since is
composed of only zeroes and ones. Finally, the standard the
state-space form of 4, Bj;,, and Cj;, can be easily extracted:

Ax = FlinAx + Gli‘nAv
32
{ Y = Hjinx + Dypv (32)
where: )
1 2
Fiin = Alin Biin (33) §
Giin = Al_irlLClin u%

4.1 Accuracy of the linearized Model

In this subsection, a simple comparison test in order to
evalugte the extracted accuracy linearizec} mode’l has been -0.005; G 4 5 ?15 5 ¥ =,
described. The mechanism, introduced in section 3, has time [s]

been fed with 5 Nm torque impulse with 0.05 sec delay in
the initial configuration of g, = 90°, i.e. starting from the
vertical position; however, it should be mentioned that the
test can be implemented to any mechanism configuration
with similar results.

From the Figure 4 and 5 it can be inferred that linearized Al
model has a very high level of precision as well as the
rotation motion of ¢ is considered. As can be seen from the
Figure 4, the response of the linear and nonlinear models of
q as the generalized coordinate is very close and similar to
each other; however, the difference between them increases
when moves away from the equilibrium point. Additionally,
it can be inferred from Figure 5 that the error on ¢ increases
slowly as the error after 0.4 s is around 0.06%.

Figure 6 shows a comparison of the responses of nonlinear
and linearized system impulsive on the subject of nodal

Figure 5 Comparison between linear and nonlinear
impulsive response: percentage error on angular position q

U, [rad]

displacements u;;. According to Figures 6, the difference - : f;z‘;ea'
between the linear and nonlinear modelling of u;; are Bl L DiDE - - = -
negligible while the mechanism moves from the time [s]

equilibrium configuration as far as u;; is concerned. Figures

7 shows the modelling error on u;;, which is very small at Figure 6 Comparison between linear and nonlinear
beginning of the motion and grows slowly during the impulsive response: elastic displacement u;,

mechanism manoeuvre.

&9
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Figure 7 Comparison between linear and nonlinear
impulsive response: error in radian

on elastic displacement 144

0 0.05 0.15 04

4.2 State Observer

Fundamentally, a state observer estimates the state
variables by means of measuring a subset of the output and
control variables in order to reconstruct the state of a
system where the measurement is difficult or even
impossible in some specific situations.

A brief explanation of the Kalman observer used in our
system, is summarized here. For more details about
methodology and designing refer to [17].

Basically an observer design depends upon on two basis, a
linear time invariant dynamic model of the system and
linear relation between the state variables and the sensed
outputs. The dynamic of the overall system is described
very briefly by the following system of equations:

AX = FA% + G Au + L(Ay — AY) (34)
9 = HAR (35)
Az = —WAR (36)
e= A% — Ax (37)

where e and L are the vector of the errors of the state
variable estimates (X) and the time invariant gain matrix of
the asymptotic Kalman estimator, respectively.
Additionally W is the time invariant gain vector of linear
regulator and F and H matrices are used to assess the
system observability as well. The control vector is shown
by u while y and § present the real output signals and
estimated ones respectively. G is a matrix which is related
to the linearized model of the equilibrium configuration.
However, it should be noticed that these equations only
hold in the neighbourhood of an equilibrium configuration.
In order to evaluate our system observer, a similar test
described in the previous subsection with the same input
and configuration has been implemented. In this test
knowledge about nodal displacement u;9 and generalized
coordinate ¢ are available by the measurement in the
purpose of estimating all states of the system.
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From the Figure 8 and 9, it can be concluded that the
Kalman observer has a good accuracy for estimating the
generalized coordinate ¢ as a one system state. Regarding
the Figure 8, the impulsive response of nonlinear and
observer are very similar; although, more far from the
equilibrium point, more differences among the responses.
Particularly, Figure 9 shows the error on ¢ that is, after 0.4
sec the error between nonlinear and estimator is still so
small and converge to zero.

Figure 10 illustrates the comparison between the impulsive
respond of actual measurement of displacement u;9 and
estimated u;9 by Kalman observer. As it can be seen from
Figure 11 the difference is not so significant during the
transient. Nevertheless they increase as the mechanism
moves from the equilibrium configuration. In particular the
difference on u;¢ between the nonlinear system and the
observer are so small as long as the motion from the
original position is kept.

90.14 :
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90.06

q [deg]

90.02}

{——measured |. ...
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02 025
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0 0.3

Figure 8 Comparison between measured and estimated
angular position ¢
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Figure 9 Percentage error on estimation
of angular position ¢



4
10
1x T 1 T

Nonlinear
---Estimator

H i

H‘
il
Il

(\I”

‘q ll\|l i

ﬁr

m
I\\
m

u. [rad]

’” '“ ||
r’ m\mu |“ (

L

i \ i
0.2 0.25 0.35
time [s]

i
0.15 03 04
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Figure 11 error in radian on estimation
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5 MODEL PREDECTIVE CONTROL
WITH CONSTRAINT

In this section a short introduction to constrained MPC is
given. Model Predictive Control (MPC) is a class of
computer control algorithms that is based on constructing
controllers that are able to adjust the control action before a
variation in the occurrence of the output set point. At each
control interval the MPC algorithm attempts to optimize
future plant performance by computing a sequence of future
manipulated variable adjustment. An MPC algorithm can
be tuned according to a cost function, constraints on
controlled and control variables and to a model of the
process to be controlled. For further reading on constrained
MPC see [18].

5.1 Prediction and Control Horizons

Prediction horizon Hp is the number of samples over which
a prediction of the plant outputs is evaluated at each
iteration of the controller, while control horizon H. is the

91

ISSN 1590-8844
International Journal of Mechanics and Control, Vol. 16, No. 01, 2015

number of samples over which the control variables can
change their value.

As it can be seen in Figure 12, the MPC controller performs
a prediction from current time step k to the future time step
k+H,. In the same figure it is shown that the control action
can change only over the time interval [k, k+H.]. The
control action is chosen in order to minimize a given cost
function. The first value of the optimal control sequence is
actually fed to the plant, and the whole calculation is be
repeated at subsequent control intervals. Prediction horizon
is moving forward for every iteration in time and the MPC
controller predicts the plant output again.

Output Setpoint
Predicted Output
Past Output
Meaw
Control Acti
Past Control ontrol Action
Action
— >
O T | _
k k+He kHp  Time

Control Horizon

I

\ Prediction Horizon |
[ 1

Figure 12 A discrete MPC controller scheme

5.2 Model Prediction and Cost Function

A discrete time state-space model is often used to provide

predictive capability in MPC controller:
= Ax k + B Wk (3 8)

(39

Xk+1

Vi = ka + DWk

The MPC controller computes a sequence of the predicted a
new control input vector in order to minimize a cost
function. Often used cost function in MPC is the linear
quadratic function:

J =28 @ =)@ — 1) + Tnc, AR Aw +

Yre wTRyw (40)

in which ¥, r, Aw, w are the predicted plant outputs, the
reference signal for outputs, the change rate of control
action and the control action, respectively. @, R;and R, are
the weighting matrices used to tune the control
performance. Q is used to penalize the tracking error, while
R, and R, are used to penalize the change rate and the
absolute value of control action, respectively. In general,
Equation 40 is used in MIMO systems (Multiple Input and
Multiple Outputs) and also could be expanded to MISO
systems (Multiple Input and Single Output) such as our
case, a system with 50 inputs (states) and one output
(torque).



Constrained MPC controller has ability to take into account
constraints of physical systems in its future control
performance calculations. The formulation used in this
paper allows to define constraints as follows:

Ymin < y < Ymax (41)
And inputs constrains can be defined as:

AWpin < AW < AWy (42)
Whnin Sw< Winax (43)

6 RESULT OF MODEL PREDICTIVE CONTROL
WITH CONSTRAINT

In this section the results of several numerical tests are
provided and discussed to show the capabilities of the MPC
controller for position and vibration control of flexible
mechanisms. The tuning of the MPC controller depends on
weight on u;9, weight on ¢, sampling time (7}), prediction
horizon (#1,) and control horizon (H.).

In practical applications, the values of T, H, and H, should
be selected on the basis of the available computational

resources. The computational cost of solving the
optimization problem of each iteration of the controller
depends on both A, and H..

Generally speaking, longer H. results in aggressive control
action while longer H, causes more damped response and
more precise reference tracking [12].

The whole behaviour of the controller relies on a large set
of variables. Constraints on actuation torque are chosen to
comply with the physical limitations of the actuator. Other
parameters can be tuned quite freely. In this case,
constraints can be imposed on elastic displacement (u),
angular position (¢) and input torque (7) as:

Wiy S Uk S Uiy, ok =1... 24 (44)
Amin < q = Amax (45)
Tmin <t < Tmax (46)

It should be mentioned that in our system just the constraint
on torque, which is —8 < v < 8 Nm, is active.

In the following the effects of choosing different values for
tuning parameters of MPC controlled are discussed by
means of numerical tests.

6.1 Effects of f. on the Closed-loop System

Figure 13 and 14 demonstrate the response of angular
position g and elastic displacement u;, with different
sampling frequency. In all the tests reported in this work,
the mechanisms performs a 30 degree of rotation in
counter-clockwise direction starting from the horizontal
position.

It can be seen from Figure 13 that the performance of the
angular position response for both values of sampling
frequency 100 Hz and 1kHz are very similar; however, it
should be mentioned that the values of H, and H, are
chosen 20 and 5 for f. = 100 Hz and 200 and 50 for
f.=1kHz, respectively. The vibration amplitude for the
system with /=100 Hz is bigger than the system with f,=1
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kHz during the transient as it is depicted in Figure 14 for
elastic displacement u;;. The more effective vibration
damping achieved by the 1 kHz control can be explained by
taking into consideration the faster control has a sufficient
bandwidth to take into account all the significant vibration
modes of the flexible mechanism.

40 T T
5 TN
\\\
%0 7 = —
B e
o / ;
in fo
v / :
L S
10 5 ——
5 f =100HZ
5, H ¢ 4
: —f =1kHZ
: [
c | L | | | |
0 0.2 04 0.6 08 1 12 14 16 18 2
time []

Figure 13 Response of the Angular position g at with
different sampling frequency, 1 kHz and 100 kHz

110

u,, [rad]

f,=100HZ
—f =1kHZ
e

l | |
08 1 12 14 16
time [s]

18 2

Figure 14 Effect analysis of different sampling frequency
(f-) on the elastic displacement u;,

T T
_f =100HZ '
¢

8
\
[ Cfa1KHE
AR S I
LL
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Eab i
2 |
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o \
SRS
20 \ T T
3 e
A\ /
B I \\// e
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0 02 04 06 08 1 12 14 18 18 2
time [s]

Figure 15 Applied torque to the mechanism



From the Figure 15 it can be inferred that applied torque by
the control system is within the range defined by the
constraint.

6.2 Effects of H, and H,, on the Closed-loop System

In Figure 16 and 17 the effects of choosing different control
horizon has been investigated. It can be inferred that tuning
the H, parameter has a limited effect on the response of the
closed loop system. Consequently, H, can be increased up
to H, but the performance of the controller will not be
improved significantly. In most cases Hc should be kept
quite small, since a longer control horizon increases the
computational effort required to solve the minimization
problem defined by Equations 38-40.

Regarding Figure 18 and 19, changing the value of the
prediction horizon (/,) has a significant effect on the
performance of the controller. As it can be inferred from
Figure 18, selecting bigger value for H, causes more
damped response for angular position ¢; conversely,
smaller value for /), result in more aggressive response. A
similar consideration can be achieved by analysing the
Figure 19, which reports the time evolution of elastic
displacement u;,.
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/ . e
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- /’ X\_,f“‘;;;k
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= 20- /
T /
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¢
0 : :
0 05 1 15 H 25
time [s]

Figure 16 Effect analysis of different control horizon (H,)
on angular position ¢

u,, [rad]

25

fime [s]

Figure 17 Effect analysis of different control horizon (H,)

on elastic displacement u,,
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Figure 18 Effect analysis of different control horizon (/)
on angular position ¢
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Figure 19 Effect analysis of different control horizon ()
on elastic displacement u,,

Again, higher values of the prediction horizon leads to a
higher damping of vibrations.

Therefore we can conclude that the prediction horizon
should be set as high as the computational resources allows
it. Since the performance of the closed-loop system are less
sensitive to the choice of the control horizon, H, can be set
to a low value to reduce the computational effort required
to solve the optimization problem.

7 ROBUSTNESS

In this section the results of two tests which are
implemented in order to evaluate robustness of the
proposed control scheme are discussed.

Several simulations have been performed with applying the
same control system on the nonlinear model with different
parameters. The tests have been done with uncertainties of
different sign (i.e. +20%, -20%) on the mechanism links
lengths (L=L;+L,) and on the Young’s elastic modulus E.
These tests that have been developed in order to evaluate
the robustness properties of the proposed control scheme,
using an approach already reported in other works such as
[14,19].



In Figure 20 the effects of changing the mechanism length
(L=L;+L;) of the mechanism have been shown. According
to the Figure 20, the tolerance in the mechanism length
does not bring the closed loop to instability. If the actual
length of the links is 20% larger than the nominal value, the
response of the system will be more damped. On the other
hand, by decreasing by 20% the mechanism length, the
overshoot of angular position ¢ is increased with respect to
the nominal case.

Thus it can be inferred that the developed controlled is
quite robust to this kind of uncertainty, as far as angular
position tracking is concerned. It can be seen in Figure 21
that also vibration damping is influenced by mismatches in
mechanism length. If mechanism length is under-estimated,
a more effective vibration damping can be achieved, since
the overall response of the closed-loop system is slower.
According to Figure 22 and 23, changing the value of
elastic modulus £ of a + 30% does not alter significantly
the performance of the control scheme, thus the designed
MPC controller is also robust respect to changes in the
vibration models of the plant.

40r

B

| —AL=20% |
—Nominal
—AL=+20%
0 05 1 15 2 25 3

fime [5]

Figure 20 Robustness analysis of the change in the
mechanisms links lengths (L=L;+L,) on angular position q

—AL=20%
—Nominal
AL=+20%

0 0.5 1 15 2 25 3
time [s]
Figure 21 Robustness analysis of the change in the
mechanisms links lengths (L=L;+L,) on elastic
displacement u;,

ISSN 1590-8844
International Journal of Mechanics and Control, Vol. 16, No. 01, 2015

—AE=30%

/’: Nominal 5

)jo== I i I i I 1
0 01 0.2 0.3 04 05 06 07 0.8 0.9 1
time [s]

Figure 22 Robustness analysis of the change of elastic
modulus £ on angular position q

u,, [rad]
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Figure 23 Robustness analysis of the change of elastic
modulus £ on elastic displacement u;,

8 MPC CONTROLLER VS. PID CONTROLLER

In this section a comparison between results of MPC and
PID controller has been made and discussed. While PID
controller are applied in single loop controllers, MPC
controller are used for overall system. PID controllers
support only a single input put system but MPC are
applicable in multi input and multi output systems (MIMO
system).

As is shown at Figure 24 PID controller follow the target
reference with high speed and low error but with
remarkable overshoot (=35%). The tuning of the PID
control has been chosen to provide for a similar rise time.
Moreover, it can be inferred from the Figure 25 that the
amplitude of elastic displacement u,, is significantly larger
if a simple PID controller is used.

It can be therefore inferred that in this case MPC control
outperforms PID, which is currently the most widely used
control technology in industrial applications.
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Figure 24 Response of the closed loop system with PID
and MPC controller on angular position ¢
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- L I |
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Figure 25 Response of the closed loop system with PID
and MPC controller on elastic displacement u;,

CONCLUSION

In this work, a model predictive control with constrains for
a 3D L-shape mechanism has been designed and tested. The
dynamic behaviour of the flexible mechanism is described
by means of a high accurate finite element method, based
on the equivalent rigid link system (ERLS) theory and
accounting for geometric nonlinearities and gravity force.
In order to develop the constrained MPC controller the
dynamic model of the mechanism is linearized,
accordingly, a Kalman state observer has been developed as
well. The proposed control scheme allows to minimize a
performance index which takes into consideration both the
amplitude of vibrations and the angular position of the
mechanism. Meanwhile two tests on different perturbed
plants has been implemented in order to analyse the
robustness performance of the proposed control scheme.
Finally a comparison between performance of the standard
PID controller and MPC controller performance has been
done and the results show that MPC controller not only is
very effective for both reference position tracking and
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vibration suppression but also represent a high level of
robustness to uncertainties on the plant.
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