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ABSTRACT 

 

With the result of conducted research we obtain the dependencies of acceleration and time of 

accelerated movement of point of suspension load and also deviation angle of overhead crane 

rope, by which it is necessary to start braking of suspension point, providing complete reducing 

of pendulum oscillations of load with simultaneous full stop point of suspension from the initial 

velocity of the point of suspension and the maximum angle of deflection of the hoist rope. We 

use simulation model of  overhead crane and the simplex method of optimization for these 

dependencies. The obtained dependences are used to do regression model of reducing of 

pendulum oscillations of load moved by means of overhead crane with relay drive. 
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1 INTRODUCTION 

It is necessary to damp the residual load pendulum 

oscillations [1-6] to increase the productivity of overhead 

cranes (OC) with relay drive. Additional start-up motor 

drive relay OC causes large inrush currents reducing the 

service period of the electric engine [7].  

It is possible to increase the productivity of overhead cranes 

by reducing of load pendulum oscillations on flexible rope 

suspension after its delivery to the aim position. 

The well-known methods of load residual oscillations 

damping [2, 3, 4, 5, 6, 8, 9] have general disadvantages in 

the authors understanding. They are: complication of 

implemented mathematical methods and models as well as 

rather big accuracy of linear coordinates of moved load 

realization. Uncontrolled component part of pendulum 

oscillations of load is put down partly. As a rule, the time of 

displacement by oscillation damping is increasing. 

In presented work we set the task to show the possibility of 

making of rather simple regression model of full load flat 

pendulum oscillation damping. This load is moved by 

means of overhead crane with relay drive. 
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It allows to calculate optimum values of acceleration and 

braking time of load suspension point in real time regime.  

Damping of load pendulum oscillations on rope suspension 

must be implemented for current (measured) values of angle 

of load rope OC deflection from vertical line and motion 

speed of suspension point. 

2 MATERIALS AND METHODS 

In this regard, the experimental researches are carried out 

using a simulation model OC [10]. Researches are 

connected with pendulum oscillation of the load along one 

of the coordinates of three-dimensional space by a single 

braking suspension point until its complete stop by 

optimizing the values of the deflection angle of the hoist 

rope from the vertical qbb, where it is optimal to produce the 

beginning of the braking (bb) of load suspension point, 

duration of braking �Tbrak and acceleration of braking, abrak. 

The authors accept that that the speedup of acceleration and 

deceleration of the suspension point are constant and linear 

speed of the suspension point in the steady state (after 

completion of acceleration and before braking) is also 

constant. The settlement scheme of the OC dynamic system 

and the corresponding simulation model in the notation 

SimMechanics Second Generation and Simulink are shown 

in Figure 1. 
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Using a simulation model OC with load by means of 

variation of the speedup of acceleration aacc and 

acceleration time �Tacc within the limits 

aacc = (0,25:0,25:2,5) [m/s
2
]; Tacc = (0,25:0,25:2,5) [s] (1) 

it was formed two-dimensional arrays of suspension point 

speed previous the start time of braking Vs = f(aacc, �Tacc), 

the maximum angle of deviation of load rope OC from 

vertical, previous the beginning of the braking time 

qmax=f(aacc, �Tacc), the optimal value of the angle of 

deviation of load rope from the vertical qbb during which we 

have the beginning of braking of suspension point 

qbb=f(aacc, �Tacc), optimal duration of braking 

�Tbrak=f(aacc,�Tacc) and optimal constant value of the 

braking acceleration abrak= f(aacc, �Tacc). 

Length of a hoist rope accepted value l=10 [m], mass of 

load ml=100 [kg], damping coefficient on angular 

coordinate b=100 [N�m/(rad/s)]. Each element of the array 

qbb = f(aacc, �Tacc), �Tbrak=f(aacc, �Tacc), abrak = f(aacc, Tacc) 

was formed as a result of solving the problem of optimizing 

the values of the parameters defining the braking process 

(qbb, �Tbrak, abrak) by means of simplex method by the 

criterion of minimization of indicator 

y = q� res + Vsres+�y, (2) 

where the q� res – maximum residual velocity of angle 

changing of deflection of hoist rope from the vertical after 

the moment of ceasing of braking; Vsres – maximum residual 

velocity of the point of load suspension after the moment of 

ceasing of braking; �y – penalty function.  

 

 

Figure 1  Settlement scheme of the OC dynamic system (a) and the corresponding 

simulation model in SimMechanics Second Generation and Simulink notation (b). 
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Given in (2) indicators are determined by means of signal 

processing of virtual meters in simulation model OC. 

We use method of adding penalty function [11, 12] to the 

basic function (2) to mix the problem of imputation 

optimization to the problem of implicit optimization whose 

solution we apply the simplex method: 

�y=0 at Tqmax��brak;  

�y=k· |(Tqmax–�brak)| at Tqmax<�brak, 

where Tqmax – the nearest to the present time past time of 

reaching qmax; �brak – time of braking beginning; k = 100 – 

empiric penalty coefficient. 

3 RESULTS 

The results of computational experiments on the simulation 

model can be presented in graphical form of relations of 

different parameters from each other (Figure 2). 

 

 

Figure 2  Obtained functional dependencies received during the computational experiments with optimization: a) qmax from 

aacc; b) abrak from qbb; c) aacc by qmax; d) �Tbrak from Vs; d) �Tbrak from �Tacc; e) qmax from Vs; g) qbb from Vs; h) abrak from Vs. 
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Table I - The denotations of coefficients bi (i∈ [1,36]) of regression equation of the deflection angle from the vertical hoist 

rope qbb at which it is optimal to produce the beginning of braking of point suspension load, changing Vs and qmax 

 

Coefficient b1 b2 b3 b4 b5 b6 

Denotation -0,25207 -0,51995 -2,50149 -0,35418 -0,09879 0,002282 

Coefficient b7 b8 b9 b10 b11 b12 

Denotation 8,305368 22,72767 5,290067 1,984357 0,006708 -0,00157 

Coefficient b13 b14 b15 b16 b17 b18 

Denotation -56,0639 -21,9505 -12,8091 -0,78185 0,029136 0,000121 

Coefficient b19 b20 b21 b22 b23 b24 

Denotation 29,69254 23,63402 6,383197 -0,08011 -0,00633 6,53E-05 

Coefficient b25 b26 b27 b28 b29 b30 

Denotation 8,464829 -11,9735 -0,88149 0,067979 -0,00103 4,4E-06 

Coefficient b31 b32 b33 b34 b35 b36 

Denotation -9,25646 3,478413 -0,18614 0,00331 -2,1E-05 2,07E-08 

 

 

Table II - The denotations of coefficients bi (i∈[1, 36]) of the regression equation of duration  

of braking �Tbrak, changing Vs and qmax 

 

Coefficient b1 b2 b3 b4 b5 b6 

Denotations 0,705817 -4,70412 -0,17287 -0,20991 -0,02189 0,00133 

Coefficient b7 b8 b9 b10 b11 b12 

Denotations 31,05741 7,592292 1,719708 0,75559 -0,02932 -0,00028 

Coefficient b13 b14 b15 b16 b17 b18 

Denotations -53,3078 -2,40926 -5,97321 -0,02038 0,014598 -0,00011 

Coefficient b19 b20 b21 b22 b23 b24 

Denotations 23,11647 9,422257 2,162298 -0,11461 -0,00058 2,92E-05 

Coefficient b25 b26 b27 b28 b29 b30 

Denotations -2,15499 -4,46324 -0,16366 0,028677 -0,00065 3,66E-06 

Coefficient b31 b32 b33 b34 b35 b36 

Denotations -2,43068 1,172566 -0,07864 0,001549 -4,7E-06 -7,5E-08 

 

 

Table III - The denotations of coefficients bi (i∈[1, 36]) of the regression equation  

of braking acceleration abrak, changing Vs and qmax 

 

Coefficient b1 b2 b3 b4 b5 b6 

Denotations -0,0629 -0,24769 -0,4082 -0,16261 -0,03813 -0,00018 

Coefficient b7 b8 b9 b10 b11 b12 

Denotations 1,13742 3,488527 2,084317 0,750042 0,027261 -0,00049 

Coefficient b13 b14 b15 b16 b17 b18 

Denotations -8,51162 -7,4824 -4,70546 -0,48964 0,006204 0,000105 

Coefficient b19 b20 b21 b22 b23 b24 

Denotations 7,674561 8,548148 2,949286 0,021757 -0,00316 2,41E-05 

Coefficient b25 b26 b27 b28 b29 b30 

Denotations 3,078755 -4,87594 -0,51471 0,027577 -0,00035 1,35E-06 

Coefficient b31 b32 b33 b34 b35 b36 

Denotations -3,57426 1,487305 -0,06915 0,001098 -6,6E-06 6,89E-09 
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Table IV - The denotations of indicators of the the regression (3) of the angle of load rope deviation from the vertical qbb 

when it is optimal to produce braking beginning of the load suspension point from parameters Vs and qmax 

Indicator Denotation 

Coefficient of determination R
2 

0,999999 

Corrected coefficient of determination 
2

R  0,999998 

Fisher criterion F 1106150 

Sum of squared residuals RSS 0,00237 

Standard error of the regression equation SEE 0,00835 

Maximum relative inaccuracy of approximation �max, % 0,063 

 

Table V - The denotations of the quality of the regression (3) of the braking duration �Tbrak from parameters Vs and qmax 

Indicator Denotation 

Coefficient of determination R
2 

0,999843 

Corrected coefficient of determination 
2

R  0,999682 

Fisher criterion F 6205 

Sum of squared residuals RSS 0,002 

Standard error of the regression equation SEE 0,00782 

Maximum relative inaccuracy of approximation �max, % 0,77 

 

Table VI - The denotations of indicators of the regression (3) of accelerating braking abrak from parameters Vs and qmax 

Indicator Denotation 

Coefficient of determination
 

0,999987 

Corrected coefficient of determination 
2

R  0,999975 

Fisher criterion F 79243 

Sum of squared residuals RSS 0,000349 

Standard error of the regression equation SEE 0,0032 

Maximum relative inaccuracy of approximation �max, %  0,26 

 

 

Analysis of the results allow us to hypothesize that the 

optimal parameters of braking (qbb, �Tbrak, abrak) depend 

only on  two parameters characterizing the process of 

motion of a dynamic system OC before braking: on constant 

velocity of point suspension load motion Vs before braking 

and on the maximum deviation of the hoist rope OC from 

vertical prior to the time of braking qmax. This hypothesis 

was confirmed experimentally in imitation model. By the 

results of computational experiments (using the Levenberg-

Markvardt algoritm [13-15]) authors obtained regression 

dependences of the braking parameters (qbb, �Tbrak, abrak) by 

Vs and qmax, representing symmetric polynomials from two 

variables predictors Vs and qmax in degrees [0; 1; 2; 3; 4; 5] 

in all possible combinations of degrees of the argument: 

qbb, ��brak, abrak= b1�v�
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(3) 

The coefficients denotations of the regression equation (3) 

are shown in Table I-III.  

Analysis of indicators of the quality of multiple non-linear 

regression equation (2) (Table IV-VI) shows us that the 

regression equation of this type gives the best results in 

terms of accuracy (minimum inaccuracy �max). All the 

coefficients of the regression equation are significant 

according to the Student's t-statistics. The maximum relative 

inaccuracy of approximation �max is less than 0,77 % for the 

duration of braking �Tbrak throughout the considered range 

of predictors. 

Testing of regression equations for damping load show their 

efficiency (Fig. 3). In the example shown in Fig. 3, 

acceleration of speed up aacc and duration of speed up �Tacc 

are taken equal aacc = 2 [m/s
2
], �Tacc = 2 [s]. 

Residual denotations of velocities change of the deflection 

angle of the rope q� res after braking obtained in example for 

solving the optimizing problem by means of simplex 

method and using regression equations are 0,088 and 0,108 

[deg/s] correspondingly. The residual value of the linear 

velocity of the point of suspension after braking Vsres, 

obtained in the example for solving the optimization 

problem by means of simplex method and using the 

regression equation are 0,0197 and 0,0219 [m/s] 

correspondingly. 
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Figure 3  Examples of time dependences of the deflection angle of the hoist rope and rate of change of the deflection angle: 

solid line - obtained by solving the optimization problem by means of simplex method using a penalty functions; 

dashed line - obtained by parameters denotations (qbb, �Tbrak, abrak), calculated by regression (3). 

 

 

 

 

 

As a rule, load OC displacement is carried out not in the 

one plane (only by bridge movement and trolley 

movement). It is carried out in combination of two regulated 

movements, i.e. on space trajectory. 

However, space load oscillations for small angles values 

(less than 5 in most cases of displacement) can be with 

comparatively little accuracy and be presented as 

superposition of displacements in two mutually 

perpendicular planes. I.e. worked out equations of 

regression can be used for residual load pendulum 

oscillations damping by its space displacement. 

4 CONCLUSIONS 

Using imitation model OC we get equations of regression of 

load pendulum oscillations, moved by overhead crane with 

relay drive. Application of these equations of regression 

gives the possibility of the synthesis of acceleration values 

and braking time in real-time regime. It allows to damp load 

pendulum oscillations on rope suspension for present 

(measured) angle values of load rope deviation from 

vertical line and movement speed of suspension point. 

Herewith, we do not use imitation modeling which takes a 

lot of time. The synthesis is carried out by regression 

equations. Regression models, which are analogous to 

presented, can be in real-time regime and can be used in  the 

systems of automatic direction OC. 
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