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ABSTRACT

Aim of this paper is to analyze the performance of the most important solvers for finite element
method analyses with particular interest to rotordynamics. In order to benchmark their
performance in their capability of modelling the effects of gyroscopic moments, the
formulation of the gyroscopic damping matrix will be analyzed for both beam and solid
elements. Then two reference models will be described for simple rotor geometries that include
gyroscopic effects. Then the same rotor geometries will be built in the different software using
both beam and solid elements. The obtained Campbell's diagrams will be compared to each
other and to the reference models and the conclusions will be drawn.
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1 INTRODUCTION

With the advent of always increasing computational power
availability, more advanced simulation tools have been
created that allow to model and simulate the most complex
phenomena. One of the hardest dynamic problems to be
analytically solved is that of rotors dynamics on which
several forces are applied. One of the phenomena that
influences more the dynamics of rotating structures is the
gyroscopic effect, which causes an apparent stiffening of
the body and changes the frequency evolution of the
forward and backward whirling modes at the different
rotational velocities. Only some of the commercial software
for finite element analyses offer the capability to solve this
kind of problems but their performance and the correctness
of their results appears to have never been compared.
Objective of this paper is hence to benchmark the results of
four of the main solvers that offer rotordynamic
capabilities. Those are namely: MSC Nastran, NX Nastran,
Ansys and Samcef. Those software will be tested by
comparing the Campbell's diagrams obtained with the
models available in literature for two simple rotor
geometries that include the effects of gyroscopic moments.
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This benchmarking is always performed using a numerical
reference, because the goal of the activity is to compare the
capabilities of the codes. For a deeper investigation, an
experimental campaign has to be used as a reference.

2 SOFTWARE'S ELEMENTS FORMULATIONS
FOR THE GYROSCOPIC DAMPING MATRIX

2.1 BEAM ELEMENTS

Suppose that a structure is rotating with rotational velocity
0y = By around the X axis of a Cartesian (OXYZ) inertial
reference frame, hence the displacements in the directions
perpendicular to the spin axis are u, and u;. The
corresponding rotations are 6y, and 6, and the angular
velocities are 6y and 6. If a precessional velocity is
applied to an axis perpendicular to the spin axis, then a
reaction moment, called Gyroscopic moment, appears
around an axis that is perpendicular to both the spin and
precessional velocity axes. For small rotations 8y and 6,
then the instantaneous angular velocity vector is [1]

_ézey + ﬂx
{0p} =6, sin(2,t) + 6y cos(2,t)
6, cos((2,t) — O, sin({2,.t)

M

The kinetic energy of a lumped mass, obtained using (1) is
hence
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where EXI_ is its total kinetic energy, m its mass, I, and I

are respectively its polar and diametral inertia. The first two
terms of (2) contribute to the mass matrix of the elements,
while the last to the gyroscopic one. Beam elements are
considered as an infinite series of lumped masses, and so
the gyroscopic kinetic energy is obtained integrating this
term, obtaining

f

0
where p is the material density, Iy is the moment of inertial
normal to X and L is the length of the beam element. By
using the shape functions [N]for beam elements the
gyroscopic damping matrix is obtained. This formulation is
shared by all software analyzed.
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2.2 SOLID ELEMENTS

The formulation of the gyroscopic damping matrix is
instead different among the software and will be dealt
separately. MSC Nastran does not have the capability to
solve solid rotordynamic analyses and therefore its
formulation will not be shown.

2.2.1 NX Nastran

In this software the gyroscopic term is calculated only for
the nodes that have rotational degrees of freedom, which is
not the case of solid elements. Hence a "surface coat" of
shell elements has to be applied on the surface of the solid
model. For the nodes created in this way the gyroscopic
matrix is calculated as [2]
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where the term 6, is the Steiner's term of inertia, calculated
as

6, = Z m(dx? + dy?) ©)

2.2.2 ANSYS and SAMCEF

These two software share the same formulation of the
gyroscopic matrix for solid elements, and its derivation is
similar to the one for beam elements, and indeed, using the
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same notation as paragraph 2.1, the kinetic gyroscopic
energy is [3] [4] [5]

B = =0, [ x(6,y + 6y2)dm ©)
Vi

where in this case V; is the volume of the ith element.

Again, from the kinetic energy, the gyroscopic damping

matrix for each element is calculated using the appropriate

shape functions [N] for the different kind of solid elements.

3 REFERENCE MODELS

To benchmark the performance of the different software
two very well known rotor geometries will be analyzed: the
first one is the Stodola/Green rotor, while the second will
be the mid-span rotor, often called Jeffcott rotor.

3.1 STODOLA/GREEN ROTOR REFERENCE MODEL
Consider the rotor geometry shown in Figure 1 rotating
around the Z axis. The flexible but mass-less shaft has a
length S, diameter d and the free end is clamped, so the
displacements in any direction, translational or torsional,
are denied at this end.

s
Figure 1 Stodola\Green rotor geometry.

The rigid disk of diameter D, thickness T and total mass m
is placed on the other end of the shaft and it is not
constrained in any way. The inertia of the shaft and the
polar and transverse moments of inertia of the disk can be
defined respectively as [6] [7]

d*
I = % 2 (7
- m%z v
Jo= " ©
The rotor center of mass G will experience the

displacements and rotations as depicted in Figure 2, and
hence applying Newton's laws and considering that the
rotations are small (9 = 0) the following equations of
motion are obtained



mi; + ky1xg + k2119y,G =0

mye + k11Ye + k12956 =0
]tgx,(; +]P919y,c + ki2Y6 + k2206 =0
t1§y,G —Jp00y6 + kayxg + k220y6 =0

Ye

(10)

Byc

V4

Figure 2 Displacements and rotations experienced
by the center of mass G of the disk.

Organizing these equations according to the following
vector
X

Ve
19x,G

l93/,6

{u} = (11)

and calling {u} and {ii} its first and second derivative, the
following dynamic system is obtained

[MI{u} + Q[G1{u} + [K]{u} = 0 (12)
The stiffness parameters of the shaft are
12EI
1= "3 (13)
6E1
ki =5 = —ka (14)
4E1
=— 15
2= (15)

where L is the length of the shaft and £ is the Young's
modulus of the material. The mass, damping and stiffness
matrices obtained are respectively.
00
00
[M] = J, 0 (16)
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0 0 0 O
0 0 0 O
| 0 O _]p 0
_ 0 k11 klz 0
[K] - 0 k12 k22 0 (1 8)
L k21 0 0 k22

A Matlab code has been developed for computing the
results of that model.

3.2 MID-SPAN ROTOR REFERENCE MODEL

Consider now a rotor as shown in Figure 3. The rigid disk
of diameter D, thickness T and total mass m is placed at the
midpoint of the shaft of total length S and diameter d, so

that each portion has length L = S / 2~ T/z and both ends

are clamped. Proceeding in the same way as in the previous
paragraph the same displacement vector (11) and dynamic
system (12) are obtained [7] [8], but in this case the
matrices are

572

s

Figure 3 Mid-span rotor geometry.
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where in this case the inertial properties of the disk are
mR?
Jp = 5 (22)
m 1
=—|(R? —T2> 23
Jo=T (R 45 23)

and the stiffness parameters are



5=k (5/) @)
48 EI
k= L—3 (26)

Solving this system for different rotational velocities Q the
Campbell diagram for the cylindrical (bending) and 1D
modes will be plotted, but to obtain more precise results a
more accurate approach will also be used for this model.
The rotor geometry has been discretized using 61 nodes,
forming 60 beam elements according to Timoshenko's
beam theory. Each node has four degrees of freedom
organized as [9]

x
y
UNode = Iy (27)
Oy
so that for each element the displacement vector is
’ 2
UEgiement = {xl X2 Y1 Y2 Yx1 Uxz 193/1 ﬁyz} (28)

where the subscripts 1 and 2 indicate the first and second
node of each element. The mass matrix is defined as the
sum of the translational and rotational contributions so that

[M] = [M,] + [M,] (29)
where
_ pAL
£ 42001 + ¢)2
rmy, 0 0 my mgy O 0 —my
m my, 0 0 mg —-my 0
ms 0 0 my —Mmg 0
ms my O 0 —mg G0)
m; 0 0 -m,
mq —m, 0
msg 0
ms
pl
M, =—m-
T 30L-(1+ 0)?
[m; 0 mg —my 0 0 mg 7
m; mg 0 0 —-m, mg 0
mo 0 0 —mg —mqg 0
mo —mg 0 0 —mqy (31)
m, 0 0 —Mmg
m, —mg 0
mqy 0
mg
The stiffness matrix is
K= E1 32
31+ o) (32)
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ky, 0 0 ky, -k, O 0 Kk
ky k, 0 0 —k, k, O
ks 0 0 —k, k, O

ks —k, 0 0 ks

kk, 0 0 —k,

ky -k, 0

ks 0

ks

and the gyroscopic one is simply

[G] = 2[M,] (33)
All the coefficients employed in those matrices are listed in
Appendix A. As it is evident those matrices are symmetric,
especially the gyroscopic one which is instead usually
skew-symmetric. Indeed the dynamic system has to be
assembled before the solution can proceed, obtaining the
following system

M 1] o[ 101 6T,
it [M]]{”””U—q[a] [O][O]]{“} (34)
+o] () 08 =1©

To model the shaft's clamped ends, the rows and columns
corresponding to the first and last nodes of the rotor are
deleted: this simulates the eliminations of the degrees of
freedom of those two nodes, because with a clamped
constraint no displacement or rotation is possible.

3.3 IMPLEMENTATION OF THE REFERENCE
MODELS

In order to obtain accurate results, all the previous matrices
are used in a tailored Matlab code and considering a high
number of degree of freedom. The final problem dimension
for the mid-span rotor problem is 472x472. For the same
reasons, this approach has also been applied to the
Stodola/Green rotor discretizing the geometry using 53
nodes forming 52 beam elements. The final problem
dimension is 424x424.

4 BEAM MODELS AND SOFTWARE'S RESULTS

In this paragraph the results obtained from the software for
the two rotor cases will be compared. The geometrical,
material and FEM model properties are the same for each
program and are listed in Table 1 for the Stodola/Green
rotor and in Table 2 for the mid-span rotor. The same steel
properties will be used throughout this paper and hence will
be shown only once. The obtained Campbell's diagrams are
compared in Figure 4 and 5 respectively for the
Stodola/Green and mid-span rotor with those obtained from
the models shown in paragraph 3.1 and 3.2.
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Figure 4 Stodola\Green beam rotor models Campbell's diagrams comparison.
Campbell diagram
120 T T T T

=
o
o

[o0]
o

Frequency [Hz]
S o
o o

N
o
T

|

1 ! 1 1
0 500 1000 1500 2000 2500
Rotational speed [RPM]

Figure 5 Mid-span beam rotor models Campbell's diagrams comparison.

Table 1: Stodola\Green beam rotor properties
Table 2: Mid-span beam rotor properties

FEM Beam Model
N° of Nodes 53 FEM Beam Model
N° of Elements 52 N° of Nodes 61
Constraint Clamped end N° of Elements 60
Q Range 0+800 RPM Constraints Clamped ends
Material (Steel) Q Range 0+2500 RPM
E 210 GPa Geometrical Properties
v 0.3 Shaft Diameter 0.04 m
p 7850 kg/m3 Shaft Length (each) 0.58
Geometrical Properties Disk Diameter 0.7 m
Shaft Diameter 0.05m Disk Thickness 0.04 m
Shaft Length 1.2 m
Disk Diameter 0.6 m
Disk Thickness 0.05m

15



The red dashed lines in those figures represents the results
obtained from reference models, the solid black lines are
the results from Ansys, the blue ones the results from
Samcef, while the green ones are the results from NX
Nastran. The cyan dashed line indicates the condition
) = w. The results from MSC Nastran are not shown in
those plots because this software only outputs the natural
frequencies for the different modes and the rotor energies,
but not the evolution of the frequencies at the different
rotational speeds.

In the following Table 3 and Table 4, the average relative
errors for the bending and 1D modes for the Stodola/Green
rotor and for the cylindrical and 1D modes for the mid-span
rotor are respectively listed. The average relative error has
been calculated as

v (SOFTWARE, .\
. 1 (anaryricat; — 1) 100 (35)
B N

where N is the number of rotational speeds for which the
problem has been solved and i=1,...,N. For MSC Nastran,
since the only available frequency is that at 0 RPM the
relative error is calculated only for i = 1.

Table 3: Stodola\Green beam rotor average relative errors

Bending mode

ISSN 1590-8844
International Journal of Mechanics and Control, Vol. 17, No. 02, 2016

5 SOLID MODELS AND SOFTWARE'S RESULTS

The same geometrical and material properties listed in
Table 1 and Table 2 have been used for the solid models for
both rotors. 10 nodes tetrahedral solid elements with a mesh
size of 2mm has been used in each software for both
models, generating 19727 and 21085 elements for the
Stodola/Green and mid-span rotor respectively. MSC
Nastran has been excluded from this comparison since it is
not capable of solving 3D problems [10]. In NX Nastran an
additional surface coat of 6 nodes triangular shell elements
has been applied for the reasons stated in paragraph 2.2.1.
The comparisons of the Campbell's diagrams obtained are
shown in Figure 6 and Figure 7 while the average relative
errors, calculated again with (35) can be seen in Table 5
and Table 6. The same line colours of Figures 4 and 5 are
applied here. The obtained mode shapes from Ansys for the
various modes here analyzed can be seen in Figure 8 and
Figure 9. As it is evident the errors are larger than for the
beam models, which is expected, because the lumped
parameters model and the beam formulations are only
approximations of the real behavior of the rotors. In the
solid models indeed the flexibility of the disks is taken into
account. Regarding NX Nastran it is now evident that the
approximation in the formulation apparently has negative
effects on the prediction of the gyroscopic moment
influence, because the evolution of the frequencies as the
rotational velocity increases are completely different from
the values obtained by the 1D beam model.

Table 5:Stodola\Green solid rotor average relative errors

Bending mode

MSC Nastran 1.86%
NX Nastran 1.88%
Samcef 1.81%
Ansys 1.81%
1D mode

MSC Nastran 2.35%
NX Nastran 2.45%
Samcef 2.33%
Ansys 2.31%

Table 4: Mid-span beam rotor average relative errors

NX Nastran 7.82%
Samcef 2.34%
Ansys 2.34%
1D mode
NX Nastran 47.35%
Samcef 3.71%
Ansys 3.22%

Table 6: Mid-span solid rotor average relative errors

Cylindrical mode

Cylindrical mode

MSC Nastran 1.71%
NX Nastran 2.69%
Samcef 1.18%
Ansys 1.33%
1D mode

MSC Nastran 1.48%
NX Nastran 1.97%
Samcef 1.08%
Ansys 1.07%
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NX Nastran 4.06%

Samcef 1.86%

Ansys 1.93%
1D mode

NX Nastran 58.26%

Samcef 4.03%

Ansys 3.59%
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Figure 6 Stodola\Green solid rotor models Campbell's diagrams comparison.
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Figure 7 Mid-span solid rotor models Campbell's diagrams comparison.
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6 BENCHMARK CONCLUSIONS

Now that the results for all the different beam and solid
models from the different software have been compared, it
is possible to draw the conclusions. MSC Nastran is not
capable of performing any kind of 3D solid rotor dynamic
analysis and also the results for this kind of analysis are not
complete and clear even for beam models. NX Nastran in
theory has those capabilities, but evidently only the beam
elements formulation is complete, while the one for solid
elements seems to be very approximated, since the results
show large discrepancies with the 1D beam model
predictions. There is not a real gyroscopic moments
formulation, but the software considers only the additional
inertia of the shell elements placed on the surface of the
model. The results for the beam models are comparable
with the other software, but not at all for the solid ones. The
last two remaining software, Samcef and Ansys, yield
almost the same results in any of the model described
before and those are very close to the equivalent 1D beam
model, which is widely used and generally accepted as
correct. Although both could be hence used in this kind of
analyses, Ansys presents an additional feature with respect
to Samcef. This is mainly because in Samcef Field many
parameters, elements attributes and other aspects of the
model are decided by the software and if the user wants to
modify some of those values then the text input file to the
solver modules are to be modified. This is a difficult task
and it is time consuming also because the documentation is
not so clear. In Ansys instead the user has the ability to
control every aspect of the model if using the Mechanical
APDL language. Using this approach it is also possible to
setup one "solution script" and use it, with minimal and
quick changes, to study very different models, and still be
sure of obtaining correct results.
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APPENDIX A

The coefficients used in the matrices (30), (31), (32) and
(33) are defined as follows:

my; = 156 + 294¢ + 140¢?
m, = L(22 + 38.5¢ + 17.5¢?)
ms = 54 + 1269 + 70¢?

my = L(13 + 31.5¢ + 17.5¢?)
ms = L*(4 + 7¢ + 3.5¢%)

me = L*(3 + 7¢ + 3.5¢?)

m, = 36

mg = L(3 — 15¢)

me = L?(4 + 5¢ + 10¢?)

myo = L*(1 + 5¢ — 5¢?)

k; =12
k, = 6L
ks =L*(4 + @)
ky =12 - ¢)
with
A=mnr?
7+ 6v
e+
12EIy
Y= Garz



